2 00 1 Non - regular eigenstate of the XXX model as some limit of the Bethe state

نویسنده

  • Tetsuo Deguchi
چکیده

For the one-dimensional XXX model under the periodic boundary conditions, we discuss two types of eigenvectors, regular eigenvectors which have finite-valued rapidities satisfying the Bethe ansatz equations, and non-regular eigenvectors which are descendants of some regular eigenvectors under the action of the SU(2) spin-lowering operator. It was pointed out by many authors that the non-regular eigenvectors should correspond to the Bethe ansatz wavefunctions which have multiple infinite rapidities. However, it has not been explicitly shown whether such a delicate limiting procedure should be possible. In this paper, we discuss it explicitly in the level of wavefunctions: we prove that any non-regular eigenvector of the XXX model is derived from the Bethe ansatz wavefunctions through some limit of infinite rapidities. We formulate the regularization also in terms of the algebraic Bethe ansatz method. As an application of infinite rapidity, we discuss the period of the spectral flow under the twisted periodic boundary conditions. [email protected] . 1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 2 Ju l 2 00 1 Non - regular eigenstate of the XXX model as some limit of the Bethe state Tetsuo

For the one-dimensional XXX model under the periodic boundary conditions, we discuss two types of eigenvectors, regular eigenvectors which have finite-valued rapidities satisfying the Bethe ansatz equations, and non-regular eigenvectors which are descendants of some regular eigenvectors under the action of the SU(2) spin-lowering operator. It was pointed out by many authors that the non-regular...

متن کامل

1 9 Ju l 2 00 1 Non - regular eigenstate of the XXX model as some limit of the Bethe state

For the one-dimensional XXX model under the periodic boundary conditions, we discuss two types of eigenvectors, regular eigenvectors which have finite-valued rapidities satisfying the Bethe ansatz equations, and non-regular eigenvectors which are descendants of some regular eigenvectors under the action of the SU(2) spin-lowering operator. It was pointed out by many authors that the non-regular...

متن کامل

Regular XXZ Bethe states at roots of unity – as highest weight vectors of the sl 2 loop

We show that every regular Bethe ansatz eigenstate of the XXZ spin chain at roots of unity is a highest weight vector of the sl2 loop algebra and discuss whether it generates an irreducible representation or not. We show it in some sectors with respect to eigenvalues of the total spin operator SZ . The parameter q is given by a root of unity, q2N 0 = 1, for an integer N . Here, q is related to ...

متن کامل

ar X iv : 0 90 3 . 05 10 v 1 [ he p - th ] 3 M ar 2 00

We consider the physical combinatorics of critical lattice models and their associated conformal field theories arising in the continuum scaling limit. As examples, we consider A-type unitary minimal models and the level-1 sl(2) Wess-Zumino-Witten (WZW) model. The Hamiltonian of the WZW model is the Uq(sl(2)) invariant XXX spin chain. For simplicity, we consider these theories only in their vac...

متن کامل

Non-diagonal reflection for the non-critical XXZ model

The most general physical boundary S-matrix for the open XXZ spin chain in the non-critical regime (cosh(η) > 1) is derived starting from the bare Bethe ansazt equations. The boundary S-matrix as expected is expressed in terms of Γq-functions. In the isotropic limit corresponding results for the open XXX chain are also reproduced. e-mail: [email protected]

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001